The Flagged Double Schur Function

نویسنده

  • WILLIAM Y.C. CHEN
چکیده

The double Schur function is a natural generalization of the factorial Schur function introduced by Biedenharn and Louck. It also arises as the symmetric double Schubert polynomial corresponding to a class of permutations called Grassmannian permutations introduced by A. Lascoux. We present a lattice path interpretation of the double Schur function based on a flagged determinantal definition, which readily leads to a tableau interpretation similar to the original tableau definition of the factorial Schur function. The main result of this paper is a combinatorial treatment of the flagged double Schur function in terms of the lattice path interpretations of divided difference operators. Finally, we find lattice path representations of formulas for the symplectic and orthogonal characters for sp(2n) and so(2n + 1) based on the tableau representations due to King and El-Shakaway, and Sundaram. Based on the lattice path interpretations, we obtain flagged determinantal formulas for these characters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flagged Schur Functions, Schubert Polynomials, and Symmetrizing Operators

Flagged Schur functions are generalizations of Schur functions. They appear in the work of Lascoux and Schutzenberger [2] in their study of Schubert polynomials. Gessel [ 1 ] has shown that flagged Schur functions can be expressed both as a determinant in the complete homogeneous symmetric functions and in terms of column-strict tableaux just as can ordinary Schur functions (Jacobi-Trudi identi...

متن کامل

The skew Schubert polynomials

We obtain a tableau definition of the skew Schubert polynomials named by Lascoux, which are defined as flagged double skew Schur functions. These polynomials are in fact Schubert polynomials in two sets of variables indexed by 321-avoiding permutations. From the divided difference definition of the skew Schubert polynomials, we construct a lattice path interpretation based on the Chen-Li-Louck ...

متن کامل

Lattice Paths and the Flagged Cauchy Determinant

We obtain a flagged form of the Cauchy determinant and establish a correspondence between this determinant and nonintersecting lattice paths, from which it follows that Cauchy identity on Schur functions. By choosing different origins and destinations for the lattice paths, we are led to an identity of Gessel on the Cauchy sum of Schur functions in terms of the complete symmetric functions in t...

متن کامل

The Flagged Cauchy Determinant

We consider a flagged form of the Cauchy determinant, for which we provide a combinatorial interpretation in terms of nonintersecting lattice paths. In combination with the standard determinant for the enumeration of nonintersecting lattice paths, we are able to give a new proof of the Cauchy identity for Schur functions. Moreover, by choosing different starting and end points for the lattice p...

متن کامل

Schubert functors and Schubert polynomials

We construct a family of functors assigning an R-module to a flag of R-modules, where R is a commutative ring. As particular instances, we get flagged Schur functors and Schubert functors, the latter family being indexed by permutations. We identify Schubert functors for vexillary permutations with some flagged Schur functors, thus establishing a functorial analogue of a theorem from [6] and [1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001